D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
proc
/
self
/
root
/
opt
/
alt
/
python37
/
lib64
/
python3.7
/
site-packages
/
numpy
/
fft
/
Filename :
helper.py
back
Copy
""" Discrete Fourier Transforms - helper.py """ from __future__ import division, absolute_import, print_function import collections import threading from numpy.compat import integer_types from numpy.core import ( asarray, concatenate, arange, take, integer, empty ) # Created by Pearu Peterson, September 2002 __all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq'] integer_types = integer_types + (integer,) def fftshift(x, axes=None): """ Shift the zero-frequency component to the center of the spectrum. This function swaps half-spaces for all axes listed (defaults to all). Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. Parameters ---------- x : array_like Input array. axes : int or shape tuple, optional Axes over which to shift. Default is None, which shifts all axes. Returns ------- y : ndarray The shifted array. See Also -------- ifftshift : The inverse of `fftshift`. Examples -------- >>> freqs = np.fft.fftfreq(10, 0.1) >>> freqs array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.]) >>> np.fft.fftshift(freqs) array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) Shift the zero-frequency component only along the second axis: >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) >>> freqs array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) >>> np.fft.fftshift(freqs, axes=(1,)) array([[ 2., 0., 1.], [-4., 3., 4.], [-1., -3., -2.]]) """ tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, integer_types): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = (n+1)//2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y def ifftshift(x, axes=None): """ The inverse of `fftshift`. Although identical for even-length `x`, the functions differ by one sample for odd-length `x`. Parameters ---------- x : array_like Input array. axes : int or shape tuple, optional Axes over which to calculate. Defaults to None, which shifts all axes. Returns ------- y : ndarray The shifted array. See Also -------- fftshift : Shift zero-frequency component to the center of the spectrum. Examples -------- >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) >>> freqs array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) >>> np.fft.ifftshift(np.fft.fftshift(freqs)) array([[ 0., 1., 2.], [ 3., 4., -4.], [-3., -2., -1.]]) """ tmp = asarray(x) ndim = tmp.ndim if axes is None: axes = list(range(ndim)) elif isinstance(axes, integer_types): axes = (axes,) y = tmp for k in axes: n = tmp.shape[k] p2 = n-(n+1)//2 mylist = concatenate((arange(p2, n), arange(p2))) y = take(y, mylist, k) return y def fftfreq(n, d=1.0): """ Return the Discrete Fourier Transform sample frequencies. The returned float array `f` contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second. Given a window length `n` and a sample spacing `d`:: f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd Parameters ---------- n : int Window length. d : scalar, optional Sample spacing (inverse of the sampling rate). Defaults to 1. Returns ------- f : ndarray Array of length `n` containing the sample frequencies. Examples -------- >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) >>> fourier = np.fft.fft(signal) >>> n = signal.size >>> timestep = 0.1 >>> freq = np.fft.fftfreq(n, d=timestep) >>> freq array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25]) """ if not isinstance(n, integer_types): raise ValueError("n should be an integer") val = 1.0 / (n * d) results = empty(n, int) N = (n-1)//2 + 1 p1 = arange(0, N, dtype=int) results[:N] = p1 p2 = arange(-(n//2), 0, dtype=int) results[N:] = p2 return results * val #return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d) def rfftfreq(n, d=1.0): """ Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft). The returned float array `f` contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second. Given a window length `n` and a sample spacing `d`:: f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) the Nyquist frequency component is considered to be positive. Parameters ---------- n : int Window length. d : scalar, optional Sample spacing (inverse of the sampling rate). Defaults to 1. Returns ------- f : ndarray Array of length ``n//2 + 1`` containing the sample frequencies. Examples -------- >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) >>> fourier = np.fft.rfft(signal) >>> n = signal.size >>> sample_rate = 100 >>> freq = np.fft.fftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.]) >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., 50.]) """ if not isinstance(n, integer_types): raise ValueError("n should be an integer") val = 1.0/(n*d) N = n//2 + 1 results = arange(0, N, dtype=int) return results * val class _FFTCache(object): """ Cache for the FFT twiddle factors as an LRU (least recently used) cache. Parameters ---------- max_size_in_mb : int Maximum memory usage of the cache before items are being evicted. max_item_count : int Maximum item count of the cache before items are being evicted. Notes ----- Items will be evicted if either limit has been reached upon getting and setting. The maximum memory usages is not strictly the given ``max_size_in_mb`` but rather ``max(max_size_in_mb, 1.5 * size_of_largest_item)``. Thus the cache will never be completely cleared - at least one item will remain and a single large item can cause the cache to retain several smaller items even if the given maximum cache size has been exceeded. """ def __init__(self, max_size_in_mb, max_item_count): self._max_size_in_bytes = max_size_in_mb * 1024 ** 2 self._max_item_count = max_item_count self._dict = collections.OrderedDict() self._lock = threading.Lock() def put_twiddle_factors(self, n, factors): """ Store twiddle factors for an FFT of length n in the cache. Putting multiple twiddle factors for a certain n will store it multiple times. Parameters ---------- n : int Data length for the FFT. factors : ndarray The actual twiddle values. """ with self._lock: # Pop + later add to move it to the end for LRU behavior. # Internally everything is stored in a dictionary whose values are # lists. try: value = self._dict.pop(n) except KeyError: value = [] value.append(factors) self._dict[n] = value self._prune_cache() def pop_twiddle_factors(self, n): """ Pop twiddle factors for an FFT of length n from the cache. Will return None if the requested twiddle factors are not available in the cache. Parameters ---------- n : int Data length for the FFT. Returns ------- out : ndarray or None The retrieved twiddle factors if available, else None. """ with self._lock: if n not in self._dict or not self._dict[n]: return None # Pop + later add to move it to the end for LRU behavior. all_values = self._dict.pop(n) value = all_values.pop() # Only put pack if there are still some arrays left in the list. if all_values: self._dict[n] = all_values return value def _prune_cache(self): # Always keep at least one item. while len(self._dict) > 1 and ( len(self._dict) > self._max_item_count or self._check_size()): self._dict.popitem(last=False) def _check_size(self): item_sizes = [sum(_j.nbytes for _j in _i) for _i in self._dict.values() if _i] if not item_sizes: return False max_size = max(self._max_size_in_bytes, 1.5 * max(item_sizes)) return sum(item_sizes) > max_size